Self-Supervised Intrinsic Image Decomposition

نویسندگان

  • Michael Janner
  • Jiajun Wu
  • Tejas D. Kulkarni
  • Ilker Yildirim
  • Joshua B. Tenenbaum
چکیده

Intrinsic decomposition from a single image is a highly challenging task, due to its inherent ambiguity and the scarcity of training data. In contrast to traditional fully supervised learning approaches, in this paper we propose learning intrinsic image decomposition by explaining the input image. Our model, the Rendered Intrinsics Network (RIN), joins together an image decomposition pipeline, which predicts reflectance, shape, and lighting conditions given a single image, with a recombination function, a learned shading model used to recompose the original input based off of intrinsic image predictions. Our network can then use unsupervised reconstruction error as an additional signal to improve its intermediate representations. This allows large-scale unlabeled data to be useful during training, and also enables transferring learned knowledge to images of unseen object categories, lighting conditions, and shapes. Extensive experiments demonstrate that our method performs well on both intrinsic image decomposition and knowledge transfer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DARN: a Deep Adversial Residual Network for Intrinsic Image Decomposition

We present a new deep supervised learning method for intrinsic decomposition of a single image into its albedo and shading components. Our contributions are based on a new fully convolutional neural network that estimates absolute albedo and shading jointly. As opposed to classical intrinsic image decomposition work, it is fully data-driven, hence does not require any physical priors like shadi...

متن کامل

Empirical mode decomposition with missing values

This paper considers an improvement of empirical mode decomposition (EMD) in the presence of missing data. EMD has been widely used to decompose nonlinear and nonstationary signals into some components according to intrinsic frequency called intrinsic mode functions. However, the conventional EMD may not be efficient when missing values are present. This paper proposes a modified EMD procedure ...

متن کامل

Hybrid image fusion scheme using self-fractional Fourier functions and multivariate empirical mode decomposition

Image fusion has emerged as a promising area of research and a bivariate empirical mode decomposition based fusion scheme has recently been proposed in the literature. In this paper, a hybrid fusion scheme combining self-fractional Fourier function (SFFF) decomposition and multivariate empirical mode decomposition is proposed. In the proposed image fusion technique, images to be fused are decom...

متن کامل

Deep Unsupervised Intrinsic Image Decomposition by Siamese Training

We harness modern intrinsic decomposition tools based on deep learning to increase their applicability on realworld use cases. Traditional techniques are derived from the Retinex theory: handmade prior assumptions constrain an optimization to yield a unique solution that is qualitatively satisfying on a limited set of examples. Modern techniques based on supervised deep learning leverage larges...

متن کامل

A New Signal Denoising Method using Iterative Thresholding of the Spectral Intrinsic Decomposition

This paper presents a new signal denoising method based on the classical three step procedure analysis-thresholdsynthesis and the Spectral Intrinsic Decomposition (SID). This method consists of an iterative thresholding of the SID components. If the wavelets denoising approach depends on the choice of the wavelet form, the SID-denoising proposed in this paper is self adaptive. The SID-based rem...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017